代码地址:新建标签页 (github.com)

视频:https://www.bilibili.com/video/BV1dU4y1C7so/?p=4&vd_source=91219057315288b0881021e879825aa3

阅读理解

加载数据

from datasets import load_dataset

dataset = load_dataset("./data/clone/squad")

dataset.save_to_disk('./data/squad')

因为无法访问外网,这里先用git把数据集下下来,然后加载。

分词工具

from transformers import AutoTokenizer

#加载分词工具
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')

采样

#采样,数据量太大了跑不动
dataset['train'] = dataset['train'].shuffle().select(range(10000))
dataset['validation'] = dataset['validation'].shuffle().select(range(200))

print(dataset['train'][0])

dataset

image-20221025083557720

预处理

#从官方教程里抄出来的函数,总之就是squad数据的处理函数,过程非常复杂,即使是官方的实现也是有问题的,我实在没本事写这个
def prepare_train_features(examples):

    examples["question"] = [q.lstrip() for q in examples["question"]]

  
    tokenized_examples = tokenizer(
        examples['question'],
        examples['context'],
        truncation='only_second',
        max_length=384,
        stride=128,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding='max_length',
    )

    
    sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
   
    offset_mapping = tokenized_examples.pop("offset_mapping")

  
    tokenized_examples["start_positions"] = []
    tokenized_examples["end_positions"] = []

    for i, offsets in enumerate(offset_mapping):
     
        input_ids = tokenized_examples["input_ids"][i]
        cls_index = input_ids.index(tokenizer.cls_token_id)

        sequence_ids = tokenized_examples.sequence_ids(i)

        sample_index = sample_mapping[i]
        answers = examples["answers"][sample_index]
       
        if len(answers["answer_start"]) == 0:
            tokenized_examples["start_positions"].append(cls_index)
            tokenized_examples["end_positions"].append(cls_index)
        else:
            
            start_char = answers["answer_start"][0]
            end_char = start_char + len(answers["text"][0])

            token_start_index = 0
            while sequence_ids[token_start_index] != 1:
                token_start_index += 1

                       token_end_index = len(input_ids) - 1
            while sequence_ids[token_end_index] != 1:
                token_end_index -= 1

         
            if not (offsets[token_start_index][0] <= start_char
                    and offsets[token_end_index][1] >= end_char):
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
               
                while token_start_index < len(offsets) and offsets[
                        token_start_index][0] <= start_char:
                    token_start_index += 1
                tokenized_examples["start_positions"].append(
                    token_start_index - 1)
                while offsets[token_end_index][1] >= end_char:
                    token_end_index -= 1
                tokenized_examples["end_positions"].append(token_end_index + 1)

    return tokenized_examples


#调用squad数据预处理函数
examples = prepare_train_features(dataset['train'][:3])

#先看看处理后的结果
for k, v in examples.items():
    print(k, len(v), v)
    print()

#还原成文字查看,很显然,即使是huggingface的实现也是有问题的
for i in range(len(examples['input_ids'])):
    input_ids = examples['input_ids'][i]
    start_positions = examples['start_positions'][i]
    end_positions = examples['end_positions'][i]

    print('问题和文本')
    question_and_context = tokenizer.decode(input_ids)
    print(question_and_context)

    print('答案')
    answer = tokenizer.decode(input_ids[start_positions:end_positions])
    print(answer)

    print('原答案')
    original_answer = dataset['train'][i]['answers']['text'][0]
    print(original_answer)
    print()

应用预处理函数

#应用预处理函数
dataset = dataset.map(
    function=prepare_train_features,
    batched=True,
    remove_columns=['id', 'title', 'context', 'question', 'answers'])

print(dataset['train'][0])
dataset

image-20221025083909468

数据加载器

import torch
from transformers.data.data_collator import default_data_collator

#数据加载器
loader = torch.utils.data.DataLoader(
    dataset=dataset['train'],
    batch_size=8,
    collate_fn=default_data_collator,
    shuffle=True,
    drop_last=True,
)

for i, data in enumerate(loader):
    break

data

image-20221025084226946

定义GPU设备

def try_gpu(i=0):  
    """如果存在,则返回gpu(i),否则返回cpu()。"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')
 
def try_all_gpus():  
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]。"""
    devices = [
        torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]
device = try_gpu()

定义下游模型

from transformers import AutoModelForQuestionAnswering, DistilBertModel

#加载模型
#model = AutoModelForQuestionAnswering.from_pretrained('distilbert-base-uncased')


#定义下游任务模型
class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.pretrained = DistilBertModel.from_pretrained(
            'distilbert-base-uncased')
        
        
        self.fc = torch.nn.Sequential(torch.nn.Dropout(0.1),
                                      torch.nn.Linear(768, 2))
        
        #加载预训练模型的参数
        parameters = AutoModelForQuestionAnswering.from_pretrained('distilbert-base-uncased')
       
        self.fc[1].load_state_dict(parameters.qa_outputs.state_dict())

    def forward(self, input_ids, attention_mask, start_positions,
                end_positions):
        
        # 放在gpu上训练
        if torch.cuda.is_available():
            input_ids = input_ids.to(device)
            attention_mask = attention_mask.to(device)
            start_positions = start_positions.to(device)
            end_positions = end_positions.to(device)
        
        
        #[b, lens] -> [b, lens, 768]
        logits = self.pretrained(input_ids=input_ids,
                                 attention_mask=attention_mask)
        logits = logits.last_hidden_state

        #[b, lens, 768] -> [b, lens, 2]
        logits = self.fc(logits)
        #[b, lens, 2] -> [b, lens, 1],[b, lens, 1]
        start_logits, end_logits = logits.split(1, dim=2)

        #[b, lens, 1] -> [b, lens]
        start_logits = start_logits.squeeze(2)
        end_logits = end_logits.squeeze(2)

        #起点和终点都不能超出句子的长度
        lens = start_logits.shape[1]
        start_positions = start_positions.clamp(0, lens)
        end_positions = end_positions.clamp(0, lens)

        criterion = torch.nn.CrossEntropyLoss(ignore_index=lens)

        start_loss = criterion(start_logits, start_positions)
        end_loss = criterion(end_logits, end_positions)
        loss = (start_loss + end_loss) / 2

        return {
            'loss': loss,
            'start_logits': start_logits,
            'end_logits': end_logits
        }


model = Model()


model = model.to(device)


#统计参数量
print(sum(i.numel() for i in model.parameters()) / 10000)


out = model(**data)

out['loss'], out['start_logits'].shape, out['end_logits'].shape
  • 为什么要用distilbert-base-uncased模型

distilbert-base-uncased: 基于bert-base-uncased的蒸馏(压缩)模型, 编码器具有6个隐层, 输出768维张量, 12个自注意力头, 共66M参数量。 DistilBERT 是一种小型、快速、廉价和轻量级的 Transformer 模型,通过蒸馏 BERT 基础进行训练。 根据 GLUE 语言理解基准测试,它的参数比 Bert-base-uncased 少 40%,运行速度提高 60%,同时保持 BERT 95% 以上的性能。

5分钟NLP:使用 Hugging Face 微调BERT 并使用 TensorBoard 可视化 – 知乎 (zhihu.com)

BERT预训练模型的使用_熊思健WHUT的博客-CSDN博客_bert预训练模型怎么用

huggingface文档的介绍

image-20221025125502855

官网说这个模型适合用在question answering上面

  • fc的linear层加载的参数,是官方已经写好了的

image-20221025131304346

  • 蒸馏

一分钟带你认识深度学习中的知识蒸馏 – 知乎 (zhihu.com)

  • state_dict

pytorch把所有的模型参数用一个内部定义的dict进行保存,自称为“state_dict”。这个所谓的state_dict就是不带模型结构的模型参数加载state_dict参数。

  • split

image-20221025132504302

测试

#测试
def test():
    model.eval()

    #数据加载器
    loader_val = torch.utils.data.DataLoader(
        dataset=dataset['validation'],
        batch_size=16,
        collate_fn=default_data_collator,
        shuffle=True,
        drop_last=True,
    )

    start_offset = 0
    end_offset = 0
    total = 0
    for i, data in enumerate(loader_val):
        #计算
        with torch.no_grad():
            out = model(**data)

        start_offset += (out['start_logits'].argmax(dim=1) -
                         data['start_positions']).abs().sum().item()

        end_offset += (out['end_logits'].argmax(dim=1) -
                       data['end_positions']).abs().sum().item()

        total += 16

        if i % 10 == 0:
            print(i)

        if i == 50:
            break

    print(start_offset / total, end_offset / total)

    start_logits = out['start_logits'].argmax(dim=1)
    end_logits = out['end_logits'].argmax(dim=1)
    for i in range(4):
        input_ids = data['input_ids'][i]

        pred_answer = input_ids[start_logits[i]:end_logits[i]]

        label_answer = input_ids[
            data['start_positions'][i]:data['end_positions'][i]]

        print('input_ids=', tokenizer.decode(input_ids))
        print('pred_answer=', tokenizer.decode(pred_answer))
        print('label_answer=', tokenizer.decode(label_answer))
        print()
        
test()

训练

from transformers import AdamW
from transformers.optimization import get_scheduler


#训练
def train():
    optimizer = AdamW(model.parameters(), lr=2e-5)
    scheduler = get_scheduler(name='linear',
                              num_warmup_steps=0,
                              num_training_steps=len(loader),
                              optimizer=optimizer)

    model.train()
    for i, data in enumerate(loader):
        out = model(**data)
        loss = out['loss']

        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

        optimizer.step()
        scheduler.step()

        optimizer.zero_grad()
        model.zero_grad()

        if i % 50 == 0:
            lr = optimizer.state_dict()['param_groups'][0]['lr']

            start_offset = (out['start_logits'].argmax(dim=1) -
                            data['start_positions']).abs().sum().item() / 8

            end_offset = (out['end_logits'].argmax(dim=1) -
                          data['end_positions']).abs().sum().item() / 8

            print(i, loss.item(), lr, start_offset, end_offset)
	# model文件夹提前创建好
    torch.save(model, './models/3.阅读理解.model') 

train()

image-20221025162950586

  • scheduler

optimizer.step()和scheduler.step()是我们在训练网络之前都需要设置。我理解的是optimizer是指定使用哪个优化器,scheduler是对优化器的学习率进行调整,正常情况下训练的步骤越大,学习率应该变得越小。optimizer.step()通常用在每个mini-batch之中,而scheduler.step()通常用在epoch里面,但是不绝对。可以根据具体的需求来做。只有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。通常我们在scheduler的step_size表示scheduler.step()每调用step_size次,对应的学习率就会按照策略调整一次。所以如果scheduler.step()是放在mini-batch里面,那么step_size指的是经过这么多次迭代,学习率改变一次。

训练时的学习率调整:optimizer和scheduler – 知乎 (zhihu.com)

加载模型

model = torch.load('models/3.阅读理解.model')
test()

image-20221025162929330

Pytorch多GPU并行与显存管理

torch.nn.DataParallel

【Pytorch】多GPU并行与显存管理_ccamelliatree的博客-CSDN博客

把字典放到cuda上去

报错内容:AttributeError: ‘dict’ object has no attribute ‘cuda’

解决方法:data = {key:data[key].to(device) for key in data}

‘dict’ object has no attribute ‘cuda’的解决方法_York1996的博客-CSDN博客

原文地址:http://www.cnblogs.com/bzwww/p/16830806.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性