A. Bestie

You are given an array $a$ consisting of $n$ integers $a_1,a_2, \dots ,a_n$. Friends asked you to make the greatest common divisor (GCD) of all numbers in the array equal to $1$. In one operation, you can do the following:

  • Select an arbitrary index in the array $1 \leq i \leq n$;
  • Make $a_i=\gcd{(a_i,i)}$, where $\gcd{(x,y)}$ denotes the GCD of integers $x$ and $y$. The cost of such an operation is $n−i+1$.

You need to find the minimum total cost of operations we need to perform so that the GCD of the all array numbers becomes equal to $1$.

Input

Each test consists of multiple test cases. The first line contains an integer $t$ $(1 \leq t \leq 5000)$ — the number of test cases. The description of test cases follows.

The first line of each test case contains a single integer $n$ $(1 \leq n \leq 20)$ — the length of the array.

The second line of each test case contains $n$ integers $a_1,a_2, \dots ,a_n$ $(1 \leq a_i \leq {10}^{9})$ — the elements of the array.

Output

For each test case, output a single integer — the minimum total cost of operations that will need to be performed so that the GCD of all numbers in the array becomes equal to $1$.

We can show that it’s always possible to do so.

Example

input

9
1
1
1
2
2
2 4
3
3 6 9
4
5 10 15 20
5
120 60 80 40 80
6
150 90 180 120 60 30
6
2 4 6 9 12 18
6
30 60 90 120 125 125

output

0
1
2
2
1
3
3
0
1

Note

In the first test case, the GCD of the entire array is already equal to $1$, so there is no need to perform operations.

In the second test case, select $i=1$. After this operation, $a_1=\gcd{(2,1)}=1$. The cost of this operation is $1$.

In the third test case, you can select $i=1$, after that the array a will be equal to $[1,4]$. The GCD of this array is $1$, and the total cost is $2$.

In the fourth test case, you can select $i=2$, after that the array a will be equal to $[3,2,9]$. The GCD of this array is $1$, and the total cost is $2$.

In the sixth test case, you can select $i=4$ and $i=5$, after that the array a will be equal to $[120,60,80,4,5]$. The GCD of this array is $1$, and the total cost is $3$.

 

解题思路

  A题,比赛的时候卡了一个小时,哈哈。

  先说一个重要的结论:对于一个整数$n$,有$\gcd{(n – 1, n)} = 1$。证明如下:

  先证$\gcd{(a, b)} = \gcd{(a – b, b)}$。设$\gcd{(a, b)} = d$,那么有$a = d \times x$,$b = d \times y$,并且$x$和$y$互质(如果$x$和$y$不互质那么$a$和$b$的最大公约数就不是$d$了)。证明$d$是$a – b$的公约数:有$a – b = d \times x – d \times y = d \times (x – y)$,即$d \mid a – b$。又因为$d \mid b$,因此$d$是$a – b$和$b$的公约数。下面证$d$是$a – b$和$b$的最大公约数:反证法,如果存在一个$e > d$,且满足$e \mid a – b$,$e \mid b$,那么可以得到$e \mid a$,即$a$和$b$存在一个比$d$更大的公约数,这就与$\gcd{(a, b)} = d$矛盾了,因此$d$是$a – b$和$b$的最大公约数,即$\gcd{(a – b, b)} = \gcd{(a, b)} = d$。同理可证$\gcd{(a, b)} = \gcd{(a – b, a)}$。

  因此有结论$\gcd{(a, b)} = \gcd{(a – b, b)} = \gcd{(a – b, a)}$。

  因为$\gcd{(n, 1)} = 1$,因此有$\gcd{(n, 1)} = \gcd{(n – 1, n)} = 1$,得证。

  对于这道题目,假设$d = \gcd{(a_1, a_2, \dots a_n)}$,要使得$d$最终变为$1$,我们可以选择任意一个下标$i$以及$i-1$来与$d$求最大公约数,最后得到的结果必然是$1$(因为$\gcd{(i – 1, i)} = 1$,因此$\gcd{(d, i – 1, i)} = \gcd{(d, \gcd{(i – 1, i)})} = 1$)。为了使得代价最小,这里$i$取$n$,那么这样就可以保证答案$\leq 3$。

  下面分类讨论:

  1. 如果$d = 1$,那么就不用操作,答案为$0$。
  2. 否则尝试只选择下标$n$,如果有$\gcd{(d, n)} = 1$,那么答案为$1$。
  3. 否则尝试只选择下标$n-1$,如果有$\gcd{(d, n-1)} = 1$,那么答案为$2$。
  4. 否则选择下标$n$和下标$n-1$,那么答案为$3$。

  AC代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 int gcd(int a, int b) {
 5     return b ? gcd(b, a % b) : a;
 6 }
 7 
 8 void solve() {
 9     int n;
10     scanf("%d", &n);
11     
12     int d = 0;
13     for (int i = 0; i < n; i++) {
14         int x;
15         scanf("%d", &x);
16         d = gcd(d, x);
17     }
18     
19     int ret = 3;
20     if (d == 1) ret = 0;
21     else if (gcd(d, n) == 1) ret = 1;
22     else if (gcd(d, n - 1) == 1) ret = 2;
23     
24     printf("%d\n", ret);
25 }
26 
27 int main() {
28     int t;
29     scanf("%d", &t);
30     while (t--) {
31         solve();
32     }
33     
34     return 0;
35 }

 

参考资料

  Codeforces Round #830 (Div. 2) Editorial:https://codeforces.com/blog/entry/108327

  $a>b>0$,$a,b$均为正整数, $\gcd(a, b)=\gcd(a-b,a)$吗?- 张学涵的回答 – 知乎:https://www.zhihu.com/question/441593398/answer/1703905776

原文地址:http://www.cnblogs.com/onlyblues/p/16820019.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性