第一章 基础算法(一)

上课:理解算法主要思想

课后:理解代码模板并且能够快速默写 用题目检验 重复3-5次就能很好的提升熟练度

排序

快速排序

基于分治思想

  1. 确定分界点: q[l] q[l + r >> 1] q[r] 随机

    快速排序这道题目的数据已加强,划分中点取左端点或右端点时会超时,改成取中点或者随机值即可

  2. 调整区间:满足x左边的元素都小于等于x,右边的元素都大于等于x(等于x不影响),所以x不一定在中间位置

    初始情况,指针i在最左边的左边一个,指针j在最右边的右边一个的位置

    从左向右移动指针i,直到遇到第一个大于x的数,停下来;从右向左移动指针j,直到遇到第一个小于x的数停下来。

    交换此时指针i和指针j指向的数

    在继续移动指针i和j,直到i和j相遇为止

    指针j前面的数都是小于等于x的,指针i后面的数都是大于等于x的

  3. 递归处理:递归的形式处理左右两段

    两个区间:l – j j+1 – r

易错点

  1. quick_sort() 函数里面传入的是 q[] , 因此在swap内也要使用 q[];
  2. do – while 循环步进条件 要区分 q[i] 和 q[j];
  3. 递归处理的时间前面的右边界为j , 后面的左边界为 j+1。

快速排序算法模板

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序

基于分治思想

  1. 确定分界点,mid = l + r >> 1,(快速排序取的是数值,归并排序里面确定的是位置)

  2. 递归排序左边和右边,两边就变成了一个有序的数组

  3. 归并——将两个有序数组合二为一

    双指针法处理两个数列,i指向a数组的0,j指向b数组的0

    如果a[i] < a[j] 将a[i] 放入新的数组,i++

    如果a[j] < a[i] 将a[j] 放入新的数组,j++

    到最后一定是有一个数组已经全部处理完成,还有一个数组没有处理完

    将未处理完的数组全部接到新数组的后面

易错点

  1. 两个区间 [l, mid] [mid + 1, r] i = l, j = mid + 1
  2. 最后将tmp放入q的时候要注意条件是 i = l, i <= r

归并排序算法模板

void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

二分

整数二分

有单调性就一定可以二分,但是不具有单调性的题目也一定可以二分,二分的本质不是单调性

在区间上定义了某种性质,该性质在左半边满足,在右半边不满足,左右半边不能相交(整数二分)

二分可以寻找性质的边界,既可以选择不满足的边界,也可以选择满足的边界

时刻保证答案在区间内部

  1. 找中间值mid: mid = l + r >> 1

  2. 先写一个 check() 函数,然后判断如何更新,如果是 l = mid ,就要把 mid 改成 l + r >> 1

  3. 每次看更新区间是 l = mid ( 补上 +1 ) 还是 r = mid

  4. 找左区间的右边界

    1. if( check( mid ) == true )

      那么mid就在满足性质的区间里面 , 那么边界答案在 [mid, r] 里面 (包含mid)

      更新:l = mid

    2. if( check( mid ) == false )

      那么边界答案在 [ l , mid – 1 ] 里面

      更新:r = mid – 1

  5. 找右区间的左边界

    1. if( check( mid ) == true )

      那么边界答案在 [ l , mid ]

      更新:r = mid

    2. if( check( mid ) == false )

      那么边界答案在 [ l , mid ]

      更新:l = mid + 1

注意点:

  1. 每次选择下一个答案所在的区间

  2. 二分是否有解和题目有关,和二分模板无关,二分是一定有解的,只需要最后判断二分得到的答案和题目要求的答案是否相同即可

给定数列,求元素的起始位置和终止位置

判断元素的起始位置,mid满足条件,说明起始位置在mid前面,r = mid

判断元素的终止位置,mid满足条件,说明终止位置在mid后面,l = mid

整数二分算法模板

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}
//边界答案都存在l指向的位置

浮点数二分

四位小数用 1e-6

六位小数用 1e-8

因为是浮点数二分,不需要考虑边界问题

浮点数二分算法模板

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;	
        else l = mid;
    }
    return l;
}

原文地址:http://www.cnblogs.com/xushengxiang/p/16833248.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性