题目链接:[https://codeforces.com/gym/104053/problem/I]

有很简单的背包做法,但是本人赛后想了很久一些关于 \(\times 0\) 怎么求逆之类的(无聊问题),本文主要讨论了一下基于生成函数的卷积

以下设初始得病的概率是 \(\alpha_u\),被相邻的点感染的概率是 \(p_u\)
考虑假设初始的时候哪个点被感染是确定的,设 \(u\) 的生成函数为 \(F_u(x)\),\([x^k]\) 表示 \(u\) 的子树中感染了 \(k\) 个点的概率

我们考虑转移 \(F_u(x) = (p_ux \times \prod_{v \in son(u)} F_v(x)) + (1 – p_u)\)

显然结果是一个关于 \(n\) 的多项式

但如果我们依次枚举哪个点初始时被感染,时间复杂度将达到难以接受的 \(O(n^3)\),一个比较显然的想法是考虑换根 dp ,然而这些多项式并不一定有逆(可能常数项为 0 )

不过当然有一些神奇的维护前缀后缀的方法,此处暂时不说

我们考虑多一个占位符 \(y\),来表示是否存在初始时被感染的点,那么 \([y]\) 的结果(一个 \(n\)次多项式即我们想要的答案)

考虑构造一个二元的多项式环 \((\Z(x,y)\bmod y^2)\)

那么转移变成了 \(F_u(x,y) = ((p_u x + \alpha_u xy) \times \prod_{v \in son(u)}F_v(x)) + (1 – p_u)\)

考虑最后的结果为 \(y * P_1(x) + P_2(x)\),并注意到我们只关心 \(P_1(x)\),并且 \(P_1(x)\)是一个至多 n 次多项式

考虑枚举 \(x = \{1,2,3,4,….n,n+1\}\),转移的时候就只相当于在一个 \((\bmod y^2)\) 的一元多项式环上做乘法,这一步是 \(O(n^2)\)

然后,我们可以得到一个 \(P_1(x)\) 的点值表示,插值把系数插出来即可,这一步也是 \(O(n^2)\)

\(ans_k\)\(P_1(x)[x^k] = F_{rt}(x,y)[x^k][y^1]\)

原文地址:http://www.cnblogs.com/y-dove/p/16899755.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性