Pure state and mixed state

See here.

qPCA

Compute

\[ \operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right) \]

where \(\rho\) and \(\sigma\) are two density matrix, \(S\) is the swap operator.

Note that \(e^{-iS\Delta t} = \cos (\Delta t) I_1 \otimes I_2 – i\sin(\Delta t) S\).

First considering that \(\rho\) and \(\sigma\) are density matrix of pure state, i.e, \(\rho = \ket{\psi_1} \bra{\psi_1}, \sigma = \ket{\psi_2} \bra{\psi_2}\),then

\[\begin{aligned} e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2} \end{aligned} = \cos (\Delta t)\ket{\psi_1} \ket{\psi_2} – i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}. \]

So we have

\[\begin{aligned} & e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \\ =& e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2} \cdot \bra{\psi_1} \bra{\psi_2} e^{iS\Delta t} \\ = & \left[\cos (\Delta t)\ket{\psi_1} \ket{\psi_2} – i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}\right] \\ \cdot & \left[ \cos (\Delta t)\bra{\psi_1} \bra{\psi_2} + i \sin(\Delta t) \bra{\psi_2} \bra{\psi_1} \right] \\ =& \cos^2 (\Delta t)\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} + \sin^2(\Delta t)\ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} \\ &- i \sin(\Delta t)\cos (\Delta t)\left[ \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} – \ket{\psi_1} \ket{\psi_2} \bra{\psi_2} \bra{\psi_1} \right] \end{aligned} \]

Note that \(\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \rho \otimes \sigma, \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \sigma \otimes \rho\), so

\[ \operatorname{Tr}_{1}\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \sigma, \operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \rho. \]

Now we consider \(\operatorname{Tr}_{2} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\). We have

\[\begin{aligned} \operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} &= \sum_{j} \left( \bra{j}\otimes I \right)\ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\left( \ket{j}\otimes I \right) \\ &=\sum_{j} \ket{\psi_1}\bra{\psi_2} \otimes (\bra{j} \ket{\psi_2} \bra{\psi_1} \ket{j} ) \\ &= \braket{\psi_1 \mid \psi_2} \ket{\psi_1}\bra{\psi_2} \\ &= \rho\sigma \end{aligned} \]

Similarly, $ \operatorname{Tr}_{1} \ket{\psi_1} \ket{\psi_2}\bra{\psi_2} \bra{\psi_1} = \rho \sigma$. So we have

\[\begin{aligned} \operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right) &= \cos^2 (\Delta t)\sigma + \sin^2(\Delta t)\rho – i \sin(\Delta t)\cos (\Delta t)\left[ \rho, \sigma \right] \\ &=\sigma-i \Delta t[\rho, \sigma]+O\left(\Delta t^2\right) \end{aligned} \]

原文地址:http://www.cnblogs.com/linxiaoshu/p/16917023.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性